字体:大 中 小
护眼
关灯
上一页
目录
下一页
第一百八十一章 纳维-斯托克斯方程 (第2/4页)
力研究、车辆外壳的流体力学设计、空气污染效应的流动扩散分析等等。 看到这里,是不是觉得它的用途大得惊人? 问题是,N-S方程虽然意义重大也很实用,但它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前,只有在某些十分简单的特例流动问题上才能求得其精确解。 目前,全世界的数学家依然未能证明在三维座标、特定的初始条件下,N-S方程式是否有符合光滑性的解,也尚未证明若这样的解存在时,其动能有其上下界。 上面这句话以通俗易懂的方式来解释,那就是现在整个世界的数学届,都在寻找N-S方程的通解,以证明该方程的解总是存在,以便通过这组方程准确地描述出任何流体、在任何起始条件下,未来任一时间点的情况。 但对于N-S方程这样用数学理论阐明都困难的一组方程,想去证明这个方程组的解总是存在,又是何其的困难! 所以经过两百年来无数的数学家投入无数的精力,也不过只有大约一百多个特解被解出来,唯一真正算得上是有点儿特殊成果的,是数学家让·勒雷在1934年时证明的,N-S方程的弱解存在,可以在平均值上满足N-S方程,但也仅此而已,无法在每一点上满足。 此外夏裔数学家陶大师也曾写过一篇《Finitetimeblowupforanaveragedthree-dimensionalNavier-Stokesequation》的论文,将N-S方程全局正则性问题的超临界状态屏障形式化,让N-S方程的研究又有了
上一页
目录
下一页